
3.1 Our visual identity
Logo

Loughborough
University

06

Logo
The logo is the most recognisable symbol of
Loughborough University and is unique to us.
As such, it’s crucial we use it correctly and
consistently across all applications.

The logo is comprised of two core elements,
the shield and the full name Loughborough
University. When the logo is being used the two
core elements must always appear together as
a way of identifying the University.

The logo is normally used in its entirety, but there
may be practical reasons why this doesn’t apply.

For example, the shield can be used as an agile
device where it can take on a wide range of visual
forms. See page 61 for examples.

For advice or approval on using the
Loughborough University logo please
contact visualidentity@lboro.ac.uk

Getting started

with STACK

This guide was written by

Tim Lowe, The Open University
Chris Sangwin, The University of Edinburgh
Ian Jones, Loughborough University

with contributions from

Grahame Erskine (The Open University), Malthe Sporring (The University of Edinburgh)

as part of a Higher Education Academy (now Advance HE) Collaborative Award for Teaching Excellence
(CATE).

The CATE was made possible by funding from HEFCE, HEFCW, and DfE and supported by the Higher
Education Academy (now Advance HE)

Intellectual Property Rights of this guide lie with Advance HE.

Version 0.3, July 2019
Comments and suggestions on this document are welcomed: please email tim.lowe@open.ac.uk

Contents

Introduction 5

1 What is STACK? 5

2 Question behaviours 6

3 Moodle question bank 7

4 Creating a STACK question 9
4.1 Authoring a question 9
4.2 Importing a question 9

5 STACK question form 10
5.1 General settings 10

5.1.1 Question name 10
5.1.2 Question variables 10
5.1.3 Random group 13
5.1.4 Question text 13

5.2 Saving and testing 14
5.2.1 Saving 15
5.2.2 Preview and Testing 16
5.2.3 Debugging 16

5.3 General settings, continued 16
5.3.1 Default mark 17
5.3.2 Specific feedback 17
5.3.3 Penalty 17
5.3.4 General feedback 18
5.3.5 ID number 19
5.3.6 Question note 19

5.4 Input: ans1 19
5.4.1 Input type 20
5.4.2 Model answer 20
5.4.3 Input box size 20
5.4.4 Strict syntax 20
5.4.5 Insert stars 20
5.4.6 Syntax hint 21
5.4.7 Hint attribute 22
5.4.8 Forbidden words 22
5.4.9 Allowed words 23
5.4.10 Forbid float 23
5.4.11 Require lowest terms 23
5.4.12 Check the type of the response 23
5.4.13 Student must verify 23
5.4.14 Show the validation 24
5.4.15 Extra options 24

5.5 Potential response tree: prt1 24
5.5.1 Question value 25
5.5.2 Auto-simplify 25
5.5.3 Feedback variables 26
5.5.4 Nodes 26

5.6 Options 29

5.6.1 Question-level simplify 29
5.6.2 Assume positive 30
5.6.3 Assume real 30
5.6.4 Standard feedback 30
5.6.5 Multiplication sign 30
5.6.6 Surd for square root 30
5.6.7 Meaning and display of sqrt(-1) 30
5.6.8 Inverse trigonometric functions 30
5.6.9 Default shape of matrix parenthesis 30
5.6.10 Hints 31

5.7 Tags 31
5.8 Created/last saved 31
5.9 Fix dollars 32

6 Previewing the question 32

7 Question tests and deploying variants 32
7.1 Question tests 33
7.2 Deploying variants 34

Appendix A Useful Maxima commands 35

Appendix B STACK-specific Maxima commands 39

Appendix C Basic LATEX commands 40

Appendix D STACK answer input types 41

Appendix E STACK answer tests 43

Index 49

1 What is STACK?

Introduction
This guide is intended to explain how to use STACK to produce online
interactive assessment questions, and to provide a reference for commonly
used commands.

1 What is STACK?
STACK (System for Teaching and Assessment using a Computer algebra
Kernel) is a powerful system for the online assessment of mathematics and
related subjects. It enables the generation of randomised questions,
permits entry of algebraic expressions as answers and supports immediate
feedback to students based on the mathematical properties of their
answers.

STACK is available as a question type for the Moodle Virtual Learning
Environment (VLE) and also as a question type for the ILIAS system. It
can be used in other systems via the LTI (Learning Tools Interoperability)
protocol. An application programming interface (API) is being developed
to enable STACK to be easily embedded into other software. For the
purposes of this guide, we consider the use of STACK within Moodle.

STACK is a highly sophisticated system. With such a powerful system,
there is inevitably some complexity in authoring robust, useful questions.
Question authoring requires skills in a variety of areas including:

• teaching mathematics, to identify appropriate questions, common
errors and appropriate feedback;

• mathematics, to create and appropriately randomise questions;

• programming using the Maxima computer-algebra system, to
implement the question randomisation;

• simple LATEX, for the display of mathematics;

• the Moodle VLE, for storing the questions and assembling the quiz.

The complete documentation of the STACK system, including a Quick
Start guide, is part of every STACK installation. It can be accessed on
your system as

[moodle-url]/question/type/stack/doc/doc.php

where [moodle-url] is the URL of your Moodle server. This provides
documentation corresponding to the version of the system installed. The
current version of the STACK documentation can also be read at
https://github.com/maths/moodle-qtype_stack/blob/master/doc/

en/index.md (Note that this may describe features not yet available in
your local STACK installation.)

Tip

When authoring STACK questions, it is recommended that the
Firefox or Chrome web-browsers are used, rather than Internet
Explorer which can cause some difficulties.

5

https://github.com/maths/moodle-qtype_stack/blob/master/doc/en/index.md
https://github.com/maths/moodle-qtype_stack/blob/master/doc/en/index.md

2 Question behaviours

Tip

Internally, STACK has “version numbers” which are specified at
https://github.com/maths/moodle-qtype_stack/blob/master/

version.php . The version number is stored within the variable
$plugin->version. It is used within the software, and is saved within
any question written. This can help when maintaining and upgrading
the system.

Question authors do not need to worry about this in general use.

2 Question behaviours
Before beginning to create a STACK question, it is useful to have a little
understanding of the different ways in which Moodle quizzes can be used,
since this can influence how questions are written. These different ways are
known as question behaviours. Question behaviours are set at the quiz
level, rather than the question level, hence ensuring that all questions in
the quiz behave in the same way.

The different question behaviours available include the following.

Interactive with multiple tries Students can have multiple attempts
at each question within a quiz (with a hint being given after each
attempt) until some limit on the number of permitted attempts is
reached. Feedback is given immediately after each attempt. This
behaviour is most useful in formative settings and STACK was
designed primarily with this behaviour in mind.

Adaptive Students can have unlimited attempts at a question before
moving on to the next question.

Immediate feedback Students have only one attempt at answering each
question, with immediate feedback being given as soon as each
question is answered.

Deferred feedback Students have one attempt at answering each
question and no feedback is given until after the quiz closing date.
However, students will normally get “validation” feedback about
syntax errors and other input validation problems as they enter their
answers. This behaviour is most useful for summative settings such
as exams.

Immediate feedback with CBM (confidence based marking) As
Immediate feedback, but students also have to indicate how confident
they are in their answer. Marks are given based on the correctness of
the answer and the level of confidence given.

Deferred feedback with CBM As Deferred feedback, with the addition
of the confidence indicator described above.

6

https://github.com/maths/moodle-qtype_stack/blob/master/version.php
https://github.com/maths/moodle-qtype_stack/blob/master/version.php

3 Moodle question bank

3 Moodle question bank
STACK questions (along with all other types of Moodle quiz question) are
stored within the Moodle question bank. There is a question bank
associated with each individual Moodle course, and a separate bank
associated with each individual quiz.

Tip

We recommend storing questions within the course question bank,
unless there is good reason to do otherwise.

Each question bank can be divided into a number of categories which
function similar to folders or directories in a computer file system.
Categories can themselves be divided into sub-categories.

In addition to helping organise large collections of questions, one
advantage of categories is that you can ask Moodle to select a random
question from a specified category to be included within a quiz. So
questions can be randomly selected from within a category in addition to
including randomisation themselves.

Questions can also be allocated tags (see Subsection 5.7). The question
bank can be searched by tag, and questions can also be randomly selected
to be included in a quiz on the basis of their tags.

Tips

• Bear in mind how questions will be used within quizzes when
deciding on a category structure.

• Remember that questions can be randomly selected from a
category or by tag – an individual question does not have to
contain every possible randomisation internally.

The Moodle course question bank can be accessed from the Website
administration section of the Administration block on the course home
page. (Quiz question banks are accessed from the Quiz administration area
of that block, which is displayed whenever a quiz is being accessed.)

7

3 Moodle question bank

Figure 1 The Moodle course administration block

There are two views of the question bank:

Questions which shows the questions within a given category, as shown
in Figure 2;

Categories which lists the categories, and allows categories to be added,
removed or re-organised.

Figure 2 The questions view of the Moodle question bank

8

4 Creating a STACK question

4 Creating a STACK question
There are a variety of means by which STACK questions can be created.
They can be written from scratch, created by editing a copy of an existing
question or imported from another resource.

4.1 Authoring a question
To author a STACK question, first open the questions view of the question
bank (Figure 2), then select the category within which you wish to create
the question using the drop-down menu at the top of the form and click
Create a new question

From the list of possible question types offered, select STACK.

Tip

Once you have created one question of a particular genre, it is often
easier to create the next by duplicating the first and editing it.

You can duplicate a question by clicking next to the question
name in the question bank.

You will be presented with a web-form to create your question. The
different parts of this form are considered in Section 5.

4.2 Importing a question
STACK questions can be exported from one Moodle course (or question
repository) and imported to a new course. Questions should be exported
and imported using the Moodle XML file format.

To export all the questions within a given category, select Export from
within the Question bank section of the Moodle Administration block (see
Figure 1) and on the form that is then shown, select the appropriate file
format (Moodle XML) and the category to be exported.

Individual questions can be exported from the Preview question page
(see Section 6) which is opened by clicking next to the question name
in the question bank. On that page, click the link to Download this

question in Moodle XML format.

Alternatively, individual questions can also be exported using the Export

this question link in the STACK Question tests & deployed
versions page. (There are more details about this in Section 7.) The page
can be accessed using the Question tests & deployed versions link
either below the Question name on the question editing form
(Subsection 5.1.1) or at the top right-hand corner of the Preview question
page .

Questions are imported to a Moodle course using the Import link from
within the Question bank section of the Moodle Administration block. In
the form that is shown, again select Moodle XML as the file format and
then upload the file containing the previously exported question(s).

9

5 STACK question form

5 STACK question form
Here we explain the details of the web-page used to author STACK
questions. We will illustrate the process using an example question, one
random instance of which might be

Example

Expand the brackets in the expression

(x+ 2y)2.

Tips

• When creating a question, start with the worked solution to the
problem. If different random versions need different worked
solutions, then consider having two or more different questions.
If these different questions are put in the same question bank
category, or given the same tag, then the quiz can be configured
to randomly select one of them to be offered to the student.

• Similarly, questions do not have to include all randomisation
possibilities. You can have different questions which are
randomly chosen by the quiz.

5.1 General settings
This first General section of the STACK authoring form contains the
question text, question randomisation and general feedback given to the
students. By default, this section is expanded when the STACK authoring
form first opens. It contains the following elements.

5.1.1 Question name
This is the name of the question that will appear in the question bank
listing of questions. The question name box must be completed.

Tip

Choose a meaningful name, bearing in mind the end of a long name
may not be visible in the question bank listing of questions.

5.1.2 Question variables
Within this box, Maxima code is used to randomise the parameters of the
question and define variables whose value can then be used within the
question statement and any worked solution. Question variables are
optional.

Maxima is a computer-algebra system, so it can process algebraic
expressions and equations etc. Any otherwise undefined variables are
treated as mathematical variables.

10

5 STACK question form

Tips

• Use Maxima variable names consisting of more than one
character. Students cannot enter any variable name defined in
Question variables that has more than one character within
their answer. Hence, if multi-character variable names are used,
students cannot accidentally enter the name of the variable in
which the answer is stored!

• Assign each mathematical expression you wish to use in the
question or worked solution to a Maxima variable. Future
maintenance of questions is easier if Maxima code is restricted
to this area, rather than also including code in the question
statement or feedback areas. In particular, assign the correct
answer (or a sample correct answer) to the question to a
variable.

Most Maxima commands can be used in STACK (some are prohibited for
reasons of security). A list of useful Maxima commands is given in
Appendix A, and a summary of the most essential is given in the following
box. A more complete introduction to Maxima can be found at

http://maxima.sourceforge.net/docs/tutorial/en/

minimal-maxima.pdf

Maxima syntax

• Variables and function names can be a combination of letters
followed by a combination of numbers. (This is a STACK
restriction on the usual Maxima convention.)

• Lines of Maxima code should end with a semi-colon (;).

• Values are assigned to variables using a colon (:), for example
aa:4;

• Functions are defined using colon-equals (:=), for example
f(x):=x∧2;

• Equals (=) is used within equations, which could themselves be
assigned to a variable, for example eqn:x∧2-4=0;

• More complicated functions requiring several commands (similar
to subroutines) can be defined using the following syntax

f(x,y):=block([list of local variables],

command, command,

return(value to be returned));

• Comments can be included in the code using /* comment text */

• Lists are a powerful data structure and are delineated by [. . .],
for example [1,2,3]

11

http://maxima.sourceforge.net/docs/tutorial/en/minimal-maxima.pdf
http://maxima.sourceforge.net/docs/tutorial/en/minimal-maxima.pdf

5 STACK question form

In addition, STACK adds some additional commands, which in particular
are very helpful when randomising problems.

STACK randomisation commands

• rand(list) selects a random element from the given list, for
example, rand([1,2,3]).

• rand with prohib(start, end, exclude), generates a random
integer between start and end but excluding any of the elements
of the list exclude. For example
rand with prohib(-10,10,[-1,0,1]).

For the full complement of STACK commands see the documentation
on your version of STACK.

Example

For our example problem, we might decide that the general form of
the question to be asked is

Expand the brackets in the expression

(x+ ny)2

where n is a random integer between −9 and 9, but excluding −1, 0, 1.

This can be achieved using the following code in the Question
variables box.

ordergreat(x);

nn: rand_with_prohib(-9,9,[-1,0,1]);

term: (x+nn*y);

epn: term∧2;

ans: expand(epn);

simp:false;

work: x*x+x*nn*y+x*nn*y+y*y;

Here, the expression to be expanded is stored in the variable epn, and
Maxima used to calculate the answer which is stored in ans.

The command ordergreat(x) changes the default ordering of terms
in Maxima, so that the term in x is shown before that in y.

simp:false turns off the automatic Maxima simplification of the
expression, so that the next line, which defines a variable needed for
the worked solution, is not simplified.

You can experiment with developing Maxima code for STACK offline using
a local desktop version of Maxima (for example wxMaxima). To have a
local version of Maxima work in exactly the same way as STACK, with the

12

http://andrejv.github.io/wxmaxima/

5 STACK question form

all additional commands etc, you can download the STACK sandbox, as
described in the STACK documentation: [moodle-url]/
question/type/stack/doc/doc.php/CAS/STACK-Maxima sandbox.md

5.1.3 Random group
This is used to link two (or more) separate STACK questions so they have
the same values of randomised variables. It can be useful in creating a
sequence of linked questions each addressing different steps within the
same instance of a larger problem.

Every question with the same string in this box has the same seed for the
random number generator, and hence if the Question variables code is the
same in both questions, then both questions will have variables with the
same random values.

Example

For our simple example, leave this box empty.

5.1.4 Question text
This is the text of the question that will be displayed to students.

Mathematics can be included using LATEX syntax (see Appendix C). Use
the LATEX delineator \(. . . \) for inline maths and \[. . . \] for displayed
maths.

The values of any Maxima variables defined in the Question variables
section can also be included here. Using {@ . . .@} displays the value of the
variable correctly formatted using LATEX. For, example, the correctly
formatted value of the variable epn can be included using {@epn@}. This
can be included both within and outside of a LATEX environment. In both
cases, the output will be formatted using LATEX.

Tips

• It is better to assign randomised mathematical expressions to a
question variable rather than attempt complicated LATEX
constructions in the question text.

• It is better not to use Internet Explorer for authoring STACK
questions as its default behaviour is to insert an HTML link to
an email address whenever @ is entered.

It is also possible to insert the unformatted value of the variable using
{#. . . #}. This will use Maxima’s display representation rather than using
LATEX. For example, if p:sin(n*pi) then {#p#} will be replaced by
sin(n*%pi) and {@p@} will be replaced by \(\sin(n\cdot\pi)\).

A text box for students to enter their answers is included using, for
example

[[input:ans1]]

This will cause the student’s input to be assigned to the variable ans1.

13

5 STACK question form

When using STACK, students’ inputted answers are first subject to a
validation check to ensure the answer is appropriate (as defined by the
settings discussed in Subsection 5.4). Invalid answers are usually
highlighted to the student who can then address the problem and revise
their answer before it is submitted for marking.

Separating validation from “correctness” is a key design feature of STACK,
and helps students significantly. The validation feedback can be shown
even when using the Deferred feedback question behaviour.

Each input box needs to have a corresponding [[validation:ans1]] tag
indicating the position in which the input validation feedback will be
displayed.

Tip

The question text box is pre-populated with

[[input:ans1]] [[validation:ans1]]

when the question is created.

Example

For our example, ensure the Question Text box contains the following.

Expand the brackets in the expression

\[{@epn@}.\]

\({@epn@} = \) [[input:ans1]]

[[validation:ans1]]

Note that repeating the expression before the answer box provides a
hint to the students they should not enter both the question and the
solution, linked with equals signs as their answer.

STACK questions can have more than one input box for students to type
their answers into. To include a second box, include additional input and
validation tags, for example [[input:ans2]] [[validation:ans2]], in
the question text. This example will cause the answer input in the second
box to be stored in the variable ans2.

After completing these first few elements in the General section of the
form, it is useful to test the question is working before continuing.

5.2 Saving and testing
STACK does not allow the question to be saved until certain parts of the
form have been completed.

You might like to continually save and test your question as it is developed.

14

5 STACK question form

5.2.1 Saving
To enable the question to be saved, temporarily complete the following
elements of the form.

• In the Question note box (the last box within the General section of
the form) enter some text that the system will use to distinguish
between different random versions of the question.

Example

For our example, enter

\({@epn@}={@ans@} \)

This will be considered further in Subsection 5.3.6.

• Ensure the section of the form corresponding to the variable in which
the student’s answer is stored (titled Input:ans1 by default) is
expanded by clicking the down arrow to the left of the section name,
and in the box labelled Model answer enter the name of the variable
which holds a correct answer to the question. This is considered in
more detail in Subsection 5.4.2.

Example

In our example, this is ans

(If you have included more than one answer box, hence have more
than one student answer variable, you will need to do this in each
section relating to an input answer variable).

• Expand the section of the form labelled Potential response tree: prt1.
In the part labelled Node 1 (with the coloured background) enter 0
in the boxes for both Sans (the student’s answer) and Tans (the
teacher’s answer). This is where the marking of the answer is done,
and here, temporarily, we will be marking the answer as correct if 0
(Sans) equals 0 (Tans), that is, any valid answer will temporarily
always be marked as correct. This will be reconsidered and the
answer marked properly in Subsection 5.5.

Now scroll to the bottom of the form and click the
Save changes and continue editing button. This should save your work,

and keep the STACK form open for more editing. The alternative
Save changes button at the bottom of the page saves your question and

returns you to the question bank.

If there is an error in your question, the question will not be saved and red
error text will be shown at the relevant point in the question form. Correct
the error and re-save.

15

5 STACK question form

5.2.2 Preview and Testing
You can preview and test the question by either

• in the question form, click Preview which should be shown next to
the Save changes and continue editing button once the question
has been successfully saved; or

• from the question bank, click the preview icon near the question
name.

This opens a Preview question page which displays the question. Check
that this is showing a correctly randomised version of your question.

If the Maxima code fails, for reasons other than syntax errors, the question
preview may display the text

CAS Error: No expressions were returned.

The following subsection may help you resolve any issues.

5.2.3 Debugging
One way of identifying the location of errors in the Question variables code
is to comment out sections (by surrounding them with /* . . . */), and
re-saving the question. You might also wish to temporarily edit the
Question text to display the values of appropriate variables. The code can
then be uncommented in stages until the error is found.

If the question text shows the name of a variable rather than its value, this
means that the variable has not been assigned a value. This might be due
to a typographical error in either the Question variables or the Question
text.

Another useful aid is an additional STACK page that displays the values
(for one particular question instance) of all variables defined in the
question. To access this, click Question tests and deployed variants

at the top right-hand corner of the Preview question page. Scroll down
until you find the section called Question variable values which shows the
variable values for one particular randomised instance.

If changes are made to the question code, both the Preview question and
Question tests and deployed variants pages can be updated to reflect the
changes using your browser refresh function (usually F5). The Question
tests and deployed variants page will be considered in more detail in
Section 7.

5.3 General settings, continued
The remaining elements of the General section of the STACK editing form
are as follows.

16

5 STACK question form

5.3.1 Default mark
This is the mark to be given if the answer to the question is fully correct.
Since the mark can be scaled when the question is incorporated into a
quiz, it is usual to set this to be 1.

Example

For the example question, set this to 1.

5.3.2 Specific feedback
This is the feedback given to a student in response to their particular given
answer. This field is common to all Moodle quiz questions, and whether
this feedback is shown to the student or not is set at the Moodle quiz level.

In STACK, this feedback is normally generated via the Potential response
tree marking algorithm, described in Subsection 5.5.

To display the output from the potential response tree (which has the
name prt1 by default), include the tag

[[feedback:prt1]]

in the specific feedback. This is included by default when the STACK
question is created, and usually no other text need be included here.

In multi-part questions, with many inputs and many potential response
trees, it is often more sensible to put specific feedback directly next to the
inputs. Hence these tags can be moved into the Question text. However, in
moving the tags you lose some control in how the quiz can be configured.
You cannot control both the timing and the position of the feedback
(which is one unfortunate constraint of working within Moodle).

Tips

• If you want specific feedback to be shown right next to the
input, then move the tag.

• If you want control over the timing of when specific feedback is
given, using the quiz settings, leave the tag in this box.

Example

For this example, leave the [[feedback:prt1]] tag in the Specific
feedback box. Nothing else need be added to this box.

5.3.3 Penalty
When the question is used with the Interactive with multiple attempts
question behaviour, this specifies the (absolute) number of marks to be lost
for each incorrect attempt.

17

5 STACK question form

Tip

One common use is to give students three attempts at the question, in
which case the penalty should be set to 0.333. STACK takes any
penalty between 0.33 and 0.34 to be equal to 1

3 , so that 3× 0.333 = 1,
and three failed attempts loses all marks, assuming the Default mark
is set to 1.

Note

The actual number of attempts the student is permitted is determined by
the number of Hints specified, as described in Subsection 5.6.10.

5.3.4 General feedback
This is the text given to the student once they have used all their
permitted attempts at the question, or once they have given a correct
answer. It is typically used to give a worked solution to the particular
randomised question instance asked.

This section behaves similarly to the Question text section: LATEX
formatting can be included as well as values of any question variables.

Tip

You may need to define more question variables than are needed to
specify the question in order to give a sufficiently detailed worked
solution.

Example

For the example question, enter the following worked solution

\[

\begin{align*}

{@epn@} & = ({@term@}) \times ({@term@})\\

& = {@work@}\\

& = {@ans@}

\end{align*}

\]

Tip

After completing the general feedback, you may wish to save the
question and preview it to check the feedback is displaying as
expected.

18

5 STACK question form

5.3.5 ID number
This is a unique identifier which can be given to a question. It is used to
identify the question when using it outside of a quiz, for example when
embedded within other areas of Moodle.

Example

This can be left blank.

5.3.6 Question note
As mentioned in Subsection 5.2.1, the Question note is text unique to a
particular randomisation of a question, and is used to distinguish between
different randomised question instances. Two instances of a question are
considered different if their Question notes are different. The Question
notes are visible in the listing of deployed question variants, see
Subsection 7.2.

Tip

It is often useful to include a summary of the randomised question
and its answer in the question note.

Example

For the example question, if this box was not completed earlier, enter
the following for the Question note.

\({@epn@}={@ans@} \)

5.4 Input: ans1
This section of the form specifies the properties of the student input, which
by default is stored in the variable name ans1. (Throughout this section, it
is assumed that ans1 has been used to store the student input.)

If you have changed the name of the answer variable or included more than
one answer box, click the

Verify the question text and update the form

button at the end of the General section to update the rest of the form
before continuing.

If you have more than one answer box, hence more than one answer
variable, you will need to complete one of these sections for each answer
variable. These additional sections will be added to the form when the

Verify the question text and update the form

button is clicked, or when you attempt to save the question.

Note that STACK separates the processes of ensuring a student’s input is
a valid answer to the question from that of deciding if the answer is

19

5 STACK question form

correct. Some of the settings in this section help specify what a valid
answer may be, and whether students are informed of an invalid answer
before it is marked for correctness. Such a warning (if enabled) is displayed
in the area specified by the location of the [[validation:ans1]] tag in
the Question text.

5.4.1 Input type
This specifies the type of input associated with this variable. For example,
whether it is a box allowing students to enter algebraic or numerical
expressions, or a set of predefined options the student can select from. The
available Input types are given in Appendix D.

Example

For our example, we require students to enter an algebraic expression,
so select Algebraic input.

5.4.2 Model answer
This is the (or a) correct answer to the question. Generally, this will be
stored within a variable defined in the Question variables section, so give
the name of that variable here.

Example

If this field was not completed earlier, enter ans here.

5.4.3 Input box size
This is the length (in characters) of the input box displayed.

Example

The default of 15 is probably appropriate for this example.

5.4.4 Strict syntax
This specifies whether STACK should expect students to use strict
Maxima input syntax when entering an answer or not. It affects the range
of cases in which stars (for multiplication) might be automatically inserted,
if enabled. See Subsection 5.4.5 following.

5.4.5 Insert stars
This setting works in conjunction with that above, and is used to determine
how, if at all, the system automatically inserts multiplication stars into a
student’s answer where implicit multiplication might have been intended.

There are several options.

Don’t insert stars

Insert stars for implied multiplication only This allows 2x to be
interpreted as 2× x. It also means that sin x and sinx are invalid.

20

5 STACK question form

Insert stars assuming single character variable names Extends the
above to consider xy to mean x× y and not a single variable with a
two-letter name. A consequence is that sin x is invalid due to the
space, but sinx is interpreted as s× i× n× x.

Insert stars for spaces only This considers xy as a two-letter variable
name but x y as x× y. Note that sinx and sin x are considered
invalid.

Insert stars for implied multiplication and spaces Here, sinx and
sin x are invalid.

Insert stars assuming single character variables, implied and space
This considers both xy and x y as x× y. sin x is invalid due to the
space, but sinx is interpreted as s× i× n× x

To interaction between the Strict syntax and Insert stars settings is
illustrated in the table below, for a range of possible inputs.

Strict syntax
No Yes

Don’t insert stars 2x invalid
xy = xy, a single variable
f(x) invalid
2e3 invalid

2x invalid
xy = xy, a singe variable
f(x) = f(x), a function
2e3 = 2000.0

Insert stars
assuming single
character variable
names

2x = 2× x
xy = x× y
f(x) = f × x
2e3 = 6e ≈ 16.310

2x = 2× x
xy = x× y
f(x) = f(x), a function
2e3 = 2000.

Example

In this example, since no functions are present but terms such as xy
will arise, set

• Strict syntax to No,
• Insert stars to Insert stars assuming single character

variable names.

5.4.6 Syntax hint
This is text which will be shown within a answer input box, before the
student starts typing. It can be used to give a hint such as “Type your
answer here”, or a partly completed expression with ? as a placeholder to
assist students in using the correct syntax.

Example

This can be left blank.

21

5 STACK question form

5.4.7 Hint attribute
This indicates the nature of the Syntax hint given above. The options are

Value in which case students can edit the syntax hint when giving their
answer;

Placeholder when the syntax hint is deleted as soon as the student
begins to type within the answer-box.

Example

Since the Hint Syntax has been left blank, this setting becomes
irrelevant. Leave the default setting.

5.4.8 Forbidden words
This is a comma-separated list of words (text strings) that are not
permitted in a student’s answer. Any answer containing these will be
deemed invalid and the student will be asked to revise their answer.
Remember, any multi-character variable names defined within Question
variables are automatically forbidden, unless Insert stars assuming single
character variable names is enabled, in which case such an expression is
interpreted as a product of single-character variable names.

Tip

You can use forbidden words to prevent students from entering
specified Maxima commands in their answer. For example, in a
question on expanding brackets, you might like to prevent the use of
the command expand !

The following keywords which forbid common sets of Maxima commands
can be used in this field.

[[BASIC-ALGEBRA]] which forbids Maxima algebraic commands such as
simplify, factor, expand, solve, etc.

[[BASIC-CALCULUS]] which forbids calculus related commands such as
int (integration), diff (differentiation), taylor (Taylor series), etc.

[[BASIC-MATRIX]] which forbids matrix related commands such as
transpose, invert, charpoly (characteristic polynomial).

Example

In this example, it is helpful to prevent the use of the Maxima
command to expand brackets, so enter expand here. Alternatively,
you may wish to enter [[BASIC-ALGEBRA]].

22

5 STACK question form

5.4.9 Allowed words
A comma-separated list of words (text strings) that would normally be
forbidden, but which you want to allow students to enter.

Example

This can be left blank for this example.

5.4.10 Forbid float
This determines whether to reject answers as invalid if they contain
floating point numbers.

Tip

This is useful if you want to force an answer to be given as fractions,
surds etc.

Example

In the example, it seems sensible to forbid floating point numbers, so
set this to Yes.

5.4.11 Require lowest terms
This determines whether to reject answers as invalid if they contain
fractions which are not given in lowest terms.

Example

In the example, there seems no reason to use fractions, in lowest terms
or otherwise, so set this to No.

5.4.12 Check the type of the response
This specifies whether to reject answers as invalid if they are of a different
type to the model answer (as given in Subsection 5.4.2). For example,
turning this on would reject an answer which is an equation if an
expression was expected.

Example

This is a very useful validity check, so set this to be Yes.

5.4.13 Student must verify
STACK has the ability to render the expression entered by the student in
traditional mathematical notation so that the student can check their
input is as intended before submitting their answer for marking. As a
student enters an answer, it is rendered at the position in the question text
indicated by the location of the [[validation:ans1]] tag. The display is
updated as the student enters their answer.

23

5 STACK question form

This can be very helpful in aiding a student identify, for example, that

they have entered
1

x
+ 1 rather than

1

x+ 1
; it might, however, be less

useful for simple numerical answers or multiple choice types.

This setting determines whether students must wait for this validation to
be displayed before submitting their answer or not.

Example

This is a very useful aid to students, so set this to Yes.

5.4.14 Show the validation
This specifies whether to display any input validation errors to the student
or not. If Student must verify above is set to Yes, then the validation must
be shown, otherwise the student is in an impossible situation.

The options are:

No
Yes
Yes, with variable list In addition to any input validation, a list of the

variables contained in the student answer is displayed. This can help
students identify errors in an answer that may not be apparent from
a first look at its rendered form.

Example

Since Student must verify was enabled above, then this must also be
enabled, so select Yes, with variable list.

5.4.15 Extra options
Some input types require additional options. If needed, they are given here
as a comma-separated list. Whether an input type requires such options is
indicated in Appendix D.

Example

Algebraic input requires no additional options, so leave this empty.

5.5 Potential response tree: prt1
This section of the form tests the properties of a student’s answer, assigns
marks and provides answer-specific feedback. It does this through a series
of true/false tests forming an acyclic directed graph known as the
Potential response tree (PRT).

It is possible to have more than one potential response tree. For example,
in a question with two answer boxes, you may wish to use one potential
response tree for each answer. Alternatively, both answers could be judged
in a single tree.

The disconnect between inputs (i.e. boxes into which a student types an
answer) and potential response trees (i.e. algorithms which assess students’

24

5 STACK question form

answers) is a key, and unique, design feature of STACK. The most
common situations are

• Each input has a unique potential response tree.
• Every input is used by a single potential response tree.

A potential response tree will only execute when every input upon which it
relies is non-empty and valid. Hence, if many inputs are used by a single
potential response tree and one is invalid then no partial credit will be
awarded. Each input can be used by any number of potential response
trees. If an input is not used by any potential response tree then it is
essentially a item for information only. STACK includes this possibility.
Requiring non-empty and valid inputs drastically increases the reliability
of the assessment process.

If required, a second potential response tree called, for example, prt2, can
be created by including a second feedback tag [[feedback:prt2]] in the
Specific feedback box (Subsection 5.3.2). You will then need to click the

Verify the question text and update the form

button at the end of the General section to update the form and create a
new section relating to the new potential response tree. There will be one
Potential response tree section of the question authoring form for each
tree. Each of these sections will need to be completed.

Tip

When creating a marking algorithm, it is usually better to test the
mathematical properties of the student’s answer rather than
equivalence to the model answer.

5.5.1 Question value
This is the value (between 0 and 1) returned by the tree for a correct
answer. The mark returned is multiplied by the Default mark set within
the General section of the form to give the score for the question.

Example

Set this to be 1.

5.5.2 Auto-simplify
This determines whether to permit STACK to apply Maxima’s automatic
simplification to the PRT evaluations or not.

Tip

For questions testing a student’s ability to correctly gather terms, it is
not helpful for Maxima to automatically simplify the student input.
In such questions, it is useful to set this to No.

25

5 STACK question form

Example

For our question, set this to Yes.

5.5.3 Feedback variables
This box can contain Maxima commands to perform calculations involving
the student’s answer. It is similar to the Question variables, but also has
access to the student’s answer. Maxima variables defined in the Question
variables can also be accessed here.

Tip

For complicated tests on students’ answers, it can be useful to
conduct the test using Maxima code here and set a Boolean variable
on which the PRT decisions can be made.

If Auto-simplify has been turned off above, then any simplification
required in the code contained here needs to be performed explicitly using
the Maxima ev command, for example ev(expression, simp).
Alternately, the simplification setting can be overruled by manually
turning simplification on and off using the Maxima commands simp:true

and simp:false within theFeedback variables.

Example

For our example, leave this box empty

5.5.4 Nodes
The PRT is formed from a number of nodes, each of which conducts a
true/false test on the student’s answers, and modifies the mark and
feedback given as a result. New nodes can be created by clicking the
Add another node button at the end of this section.

Tips

• It is often helpful to plan the PRT on paper before attempting
to implement it online.

• It is useful to create the correct number of nodes needed before
starting to complete this section of the form.

A diagrammatic rendering of the current PRT is shown above the section
of the form in which the nodes are specified. (This diagram will not be
seen when Internet Explorer is used.)

Figure 3 The diagrammatic representation of a simple PRT

26

5 STACK question form

Each node consists of three sections, illustrated in Figure 4 and described
below.

Figure 4 The section of the form corresponding to a single PRT node

Answer test This section specifies the test to be performed, by selecting
from the drop-down menu. The various tests available are outlined
in Appendix E. Each test is typically a comparison of the values of
two Maxima variables, whose names are entered in the boxes
nominally labelled Sans (short for student’s answer) and Tans
(teacher’s answer). Some tests require additional options (see
Appendix E). These are given in the Test options box.

Some answer tests give standard feedback to the students, in which
case there will be an asymmetry between the arguments Sans and
Tans to a test. If this feedback is not required, then set Quiet to Yes.

when true This section determines the actions taken when the Answer
test returns true, specifically modifying the question score, the
feedback given to the student and what PRT node (if any) is
traversed next.

Mod determines how the current score is modified, whether the
current score is set to be equal to (=) the value given in Score, or
whether the previous score is increased (+) or decreased (-) by that
value. Penalty is any score reduction applied in this case.

Next specifies (via a drop-down list) the next node to traverse, or
whether the traversal of the PRT ends here ([stop]).

The Answer note is a unique string identifying the outcome of this
node. By default, it has the name of the PRT, the node number, and
whether it is the true or false outcome. This can usually be left
unchanged.

The feedback is the text given to students if the node test is true.
Like the Question text and General feedback, it can contain the
values of Maxima variables, including those defined in the Question
variables, the Feedback variables or the student answer itself.

when false This section of the node is identical to the above, for the case
when the node test is false.

27

5 STACK question form

Tip

Care should be taken when using calculations containing the student’s
answer within the feedback areas. For example, if a student inputs a
”placeholder” answer of 999999999.99, exponentiating it will cause
Maxima to return a float-point overflow error. Such feedback may
need to be ”protected” by including another PRT node so that
feedback involving student’s answer calculation is only given if the
answer is within reasonable limits, and more generic feedback given
otherwise.

Example

In our example, the required properties of a correct answer are that it
is both equivalent to the expression given in the question, and in
expanded form.

So we require two nodes: node 1 to test equality and node 2 to test
for the form of the answer. Once the PRT form has been completed,
the tree of nodes should be as shown below.

First, create the second node, then configure the nodes as follows.
Leave the other settings as their defaults.

Node 1

• Answer test : Set this to be AlgEquiv (algebraic
equivalence).

• SAns: Enter ans1, the students answer.

• TAns: Enter epn, the variable which stores the expression
given in the question.

• When true: Set the score equal to 0 (Mod :=, Score:0), and
the next node to be Node 2.

• When false: Set the score equal to 0 (Mod :=, Score:0), and
the next node to be [stop] to end the traversing of the
PRT. Set the feedback to be “Your answer is not equivalent
to the expression given in the question.”.

28

5 STACK question form

Node 2

• Answer test : Set this to be Expanded (expanded form).

• SAns: Enter ans1. We wish to test that the input stored in
ans1 is expanded.

• TAns: Enter ans1 again. The Expanded test does not
actually use this value, but the form requires an (any
non-empty!) entry here.

• When true: Set the score equal to 1 (Mod :=, Score:1), and
the next node to be [stop] to end the traversing of the
PRT.

• When false: Set the score equal to 0 (Mod :=, Score:0), and
the next node to be [stop] to end the traversing of the
PRT. Set the feedback to be “Your answer is equivalent to
the expression given in the question, but you have not
expanded the brackets fully.”.

You may wish to use other nodes to give feedback on common errors.

5.6 Options
This section of the form specifies some global properties of the question
and also sets the hints given to students after incorrect question attempts
when using the Interactive with multiple tries question behaviour.

5.6.1 Question-level simplify
This determines whether Maxima’s automatic simplification is applied
throughout the question, other than in the PRT. This is similar to the
corresponding setting for the PRT (Subsection 5.5.2).

Tip

The decision on whether to turn off question-level simplification can
be a delicate one. For some discussion of the issues involved, see the
STACK documentation at
[moodle-url]/question/type/stack/doc/

doc.php/Authoring/Authoring quick start 3.md

Question-level simplification can be overruled by turning manually turning
simplification on and off using the Maxima commands simp:true and
simp:false within the Question variables (Subsection 5.1.2) and Feedback
variables (Subsection 5.5.3) sections.

29

5 STACK question form

5.6.2 Assume positive
This specifies whether Maxima should assume all unknowns are positive.
In some circumstances, Maxima cannot simplify expressions without
knowing their sign.

For example, in the absence of other information Maxima simplifies
√
x2 to

|x|. If it knew all the unknowns were positive, the simplification gives x.

5.6.3 Assume real
This is similar to the above and determines whether Maxima should
assume all variables are real.

5.6.4 Standard feedback
This is the feedback text to be given when an answer is correct (that is,
full marks are awarded), partially correct (greater than 0 but less than full
marks) or incorrect (0 marks).

The default text contained in these boxes can be specified in the STACK
configuration for a particular installation.

5.6.5 Multiplication sign
This specifies how multiplication signs are displayed throughout the
question: dot (·), cross (×) or nothing.

Tip

A compromise is often needed here. We don’t usually write
mathematics with every multiplication shown explicitly, yet that is
often useful when students are validating their input.

5.6.6 Surd for square root
This specifies how square roots are displayed: as a surd (

√
) or a

fractional power.

5.6.7 Meaning and display of sqrt(-1)

This specifies what symbol to use for
√
−1.

5.6.8 Inverse trigonometric functions
This specifies the notation to use for inverse trigonometric functions, for
example, cos−1(x), acos(x) or arccos(x).

5.6.9 Default shape of matrix parenthesis
This allows the question author to specify the shape of brackets used to
delineate matrices.

30

5 STACK question form

5.6.10 Hints
Hints are text given to students after each incorrect attempt at the
question when the Interactive with multiple tries question behaviour is
used. Hint 1 is given after the first incorrect attempt, Hint 2 is given after
the second incorrect attempt etc. More hint boxes can be added using the
Add another hint button below the last hint.

The maximum number of incorrect attempts permitted is one more than
the number of non-empty hint boxes.

Tip

The number of hints used (and hence attempts allowed) should be
consistent with the score penalty specified in Subsection 5.3.3 to be
applied after each incorrect attempt.

Example

Most of the Options settings can be ignored for our example question,
but you should enter text in Hint 1 and Hint 2 to enable students to
have three attempts at the question when it is used in Interactive with
multiple tries mode.

5.7 Tags
This section of the form allows user-specified tags (identifier texts) to be
added to a question. Within the Question bank, questions can be searched
for by tags. Tags can also be used within a quiz, to allow an included
question to be randomly selected from all questions with particular tags.

To add a new tag to a question, type its name in the tag box and press
Enter. Alternatively, an existing tag can be added by selecting from the
drop-down menu.

Tags can also be added to a question via the Question bank, by clicking the

icon next to the question name.

Example

For this example, you can ignore this section of the form.

5.8 Created/last saved
This section contains automatically generated meta-data about the
question.

31

7 Question tests and deploying variants

5.9 Fix dollars
At the end of the form is an option to enable STACK to automatically
convert any LATEX environments delineated with $...$ or $$...$$ to ones
delineated with \(...\) and \[...\] as the question is saved.

6 Previewing the question
The question can be previewed by either

Note
The Preview link in the
question form will show the
last saved version of the
question.

• in the question form, clicking Preview which should be shown next
to the Save changes and continue editing button once the question
has been successfully saved; or
• from the question bank, clicking the preview icon near the

question name.

This opens a Preview question page which displays an instance of the
question.

Below the question is a set of buttons allowing you to start the question
again, automatically fill in a correct answer and submit the question as if
in a quiz.

Further down the page are various options to change how the question
behaves, which replicate many of the options available when forming a quiz
from a set of questions.

In particular, within the Attempt options section is the option to change
the question behaviour used.

7 Question tests and deploying variants
Questions tests and deployed question variants improve the quality
assurance of STACK questions, both when they are written and in the
future. Question tests (which are unit tests in software engineering terms)
ensure that the question is behaving correctly: that is, correct and
incorrect answers are being marked as such, with appropriate PRT paths
being traversed, and appropriate marks and feedback being given. If your
STACK installation is updated with a new version, you can run all the
question tests of all of your questions to reassure yourself all is working
correctly. (Or, alternatively, to find and resolve any problems!)

Deploying variants of questions allows the set of randomly generated
variants to be reviewed by the teacher before being offered to students.
This ensures that unforeseen special-cases etc. are not accidentally given
to students.

Tip

All questions should have question tests and deployed variants.

The settings for both the question tests and the deployment of variants are
contained within the Question tests & deployed versions page which
can be accessed by the link of that name either below the Question name
on the question editing form or at the top right-hand corner of the Preview
question page.

32

7 Question tests and deploying variants

7.1 Question tests
To add a Question test , click the Add a test case . . . (or the

Add another test case . . .) button within the Question tests section of
the Question tests & deployed versions page.

A new page is shown summarising one particular variant of your question,
together with your Question variables code and the particular values taken
by the variables for this specific instance.

Towards the bottom of the page is the Test inputs section where the
question test is specified.

The sample student answer(s) to be tested should be entered in the
box(es) labelled to correspond to the variable(s) in which student input is
stored, for example ans1. Since the (correct) answer to a question
probably varies between different question instances, the sample student
answer will probably be the name of a Maxima variable defined within
Question variables. The expression given in the box will not be
automatically simplified by Maxima, so if you wish to calculate an
expression based on the values of question variables here, you will need to
explicitly evaluate it using ev(expression, simp).

The expected outcomes for this answer (the score and penalty given and
the answer note of the final PRT node traversed) can be entered at the
bottom of the page. Alternatively, you can click the
Fill in the rest of the form to make a passing test-case button to

complete the form for you, on the assumption the test case passes. Using
this button, however, can lead to PRT bugs being undetected and hence it
should be used with caution. Check the data entered into the boxes looks
sensible and then click Create test case . You should repeat this for each
test case you wish to add.

Tip

As a minimum, a test case should be added for a correct answer and
an incorrect answer. You may also want to add others, to check
common wrong answers are marked correctly, and to test specific
paths through the PRT. Good practice would be to ensure that each
node in the PRT follows the true branch for at least one question
test, and similarly for the false branch.

Example

For the example question, it would be sensible to add question tests
for the following possible values of ans1.

ans to check the correct answer is marked as such.
epn to check the expression given in the question is not marked

correct, and that appropriate feedback is given.
ev(epn+1,simp) to check that an answer not algebraically equivalent

to the question is marked as incorrect, and appropriate feedback
is given.

33

7 Question tests and deploying variants

7.2 Deploying variants
Once Question tests have been created, the final step in creating a STACK
question is to deploy a suitable set of question variants. This ensures that
the “random” questions offered to students are chosen from a known set,
which can be explicitly checked by the author prior to student use.

To deploy, say, 10 variants, enter 10 in the Attempt to automatically deploy
the following number of variants box in the Deployed variants section at
the top of the Question tests & deployed versions page, and click Go .
The deployment may stop before the requested number of variants has
been created if

• there have been 3 attempts to create a new variant that fail to create
one different from those already created,
• any question tests fail.

Once variants have been deployed, they are listed (by variant number and
Question note) at the top of the Question tests & deployed versions page.
If necessary, variants can be removed (and hence not offered to students)
by clicking the cross icon next to the variant number.

Import, export and duplication of questions
When a STACK question is exported from a Moodle course (see
Subsection 4.2), the deployed variants and question tests are also exported,
and hence remain part of the question when imported to a new Moodle
course.

When a question is duplicated, however, deployed versions are not copied
to the duplicated version although the question tests are.

34

Appendix A Useful Maxima commands

Appendix A Useful Maxima commands
Maxima is a mature computer algebra system. If you intend to develop a
wide range of STACK questions then it is worthwhile investing a little time
to get to know Maxima. The following document is a good place to start.

http://maxima.sourceforge.net/docs/tutorial/en/minimal-maxima.pdf

Help on Maxima commands can be obtained by typing

? command-name

within a local installation of Maxima, or by using online manuals such as

http://maxima.sourceforge.net/docs/manual/maxima.html

Complete Maxima commands should end with a semi-colon (;).

Mathematical constants
Constant Syntax
e %e

π %pi

i %i

Mathematical operations and functions

Example
Addition 2+3

Subtraction 2-3

Multiplication 2*3

Division 2/3

Brackets 2*(3+4)

Powers 2∧3 or 2**3

Square root,
√
x sqrt(2)

Exponential, ex %e∧2, exp(2)
Natural logarithm, ln log(2) or, in STACK only, ln(2)
Magnitude/modulus, |x| abs(-2), abs(1+%i)
Equality (in an equation) 2*x+1=3

sin, cos, tan sin(%pi), cos(%pi), tan(%pi)
cosec, sec, cot csc(%pi/2), sec(%pi), cot(%pi/4)
sin−1, cos−1, tan−1 asin(0), acos(0), atan(0)
The arguments of trigonometric functions are in radians.
sinh, cosh, tanh sinh(0), cosh(0), tanh(0)
cosech, sech, coth csch(1), sech(0), coth(1)
sinh−1, cosh−1, tanh−1 asinh(0), acosh(1), atanh(0)

Factorial, n! 3! or factorial(3)

Binomial coefficient, nCr binomial(3,2)

Greatest common divisor gcd(6,3)

Note
Maxima by default uses
banker’s rounding ; for
example round(2.5) gives
2. This is often not what
you meant!

(highest common factor)

Convert to a decimal number float(sqrt(2))

Round to nearest integer round(1.2)

Round to integer below floor(1.2)

Round to integer above ceiling(1.2)

35

http://maxima.sourceforge.net/docs/tutorial/en/minimal-maxima.pdf
http://maxima.sourceforge.net/docs/manual/maxima.html

Appendix A Useful Maxima commands

Variables and functions
Variables and function names can be a combination of letters followed by a
combination of numbers. (This is a STACK restriction on the usual
Maxima convention.)

Example
Assign a value to a variable a:2

Define a function f(x):=2*x+3

Define a multi-line function
(subroutine)

f(x,y):=block([list of local variables],
command, command,
return(value to be returned))

Evaluate a function at a value f(1)

Lists
List are given within square brackets ([,]), with elements separated by
commas. Lists are ordered, and can have repeated elements.

Example
Assign a list to a variable L:[1,1,2,3,5]

Length of a list length(L)

Element of a list (e.g. 3rd) L[3]

Create a list using a general term makelist(2*n,n,1,100)

Sets
Sets are given within curly brackets ({,}), with elements separated by
commas. Sets are unordered (so {1,2}≡{2,1}). When a set is simplified,
the elements are sorted and repeated elements removed.

Example
Assign a set to a variable S:{1,3,5}

Number of (distinct) elements in a set length(S)

Convert a list to a set setify(L)

Convert a set to a list listify(S)

Matrices

Example

Assign a matrix (e.g.

(
1 2
3 4

)
) to a variable A:matrix([1,2],[3,4])

Size of a matrix matrix size(A)

Row of a matrix (e.g. 2nd) A[2]

Element of a matrix A[3,4] or A[3][4]

Matrix addition A+B

Matrix subtraction A-B

Multiplication by a scalar 2*A

Matrix multiplication A.B

Matrix power A∧∧3

Transpose of a matrix transpose(A)

Determinant of a square matrix determinant(A)

Inverse of a square matrix invert(A) or A∧∧(-1)

36

Appendix A Useful Maxima commands

Algebraic manipulation

Example
Expand brackets expand((x+y)∧2)

Factorise factor(x+2*x∧2)

Simplify a rational expression fullratsimp((x+2*x∧2)/x)

Numerator num(x/(x+2));

Denominator denom(x/(x+2));

Simplify an expression involving
exponentials or logarithms

radcan(log(2x∧3))

Combine logarithms logcontract(log(a)+log(b))

Expand trigonometric functions of
sums and multiples of angles

trigexpand(sin(A+B))

Reduce powers of trig functions to
functions of multiples of angles

trigreduce(sin(x)∧2)

Simplify using trig identities trigsimp(sin(x)∧2+cos(x)∧2)

Simplify a rational trig expression trigrat(sin(2*x)/sin(x))

Left-hand side of an equation lhs(2*x+3=x-4)

Right-hand side of an equation rhs(2*x+3=x-4)

Substitute (e.g. 4 for x in x∧2) subst(4,x,x∧2); or x∧2,[x=4]

Solve an equation for a variable solve(2*a*x-3=0,x)

Solve simultaneous equations solve([x+y=3,2*x-y=0],[x,y])

Calculus

Example
Differentiate diff(cos(x∧2),x)

Differentiate twice diff(sin(x),x,2)

Integrate integrate(x∧3,x)

Evaluate a definite integral integrate(x∧2,x,0,1)

Ordering of expressions

Example
Order in terms of increasing power
eg., 1 + x+ x2

powerdisp:true

Give priority ordering to x
eg., x+ y

ordergreat(x)

37

Appendix A Useful Maxima commands

Simplification

Example
Turn automatic simplification off simp:false

Turn automatic simplification on simp:true

Force simplification (when turned off) ev(expand((x+1)∧2), simp)

Display of variables, functions etc
It is possible to change the way a Maxima variable, function or operator is
displayed when formatted using LATEX. For example, STACK is configured
to display log(x), the natural logarithm, as ln(x) by default. This can be
changed to loge(x) by including the command

texput(log,"\\mathrm{log}_e", prefix);

within the Question variables.

Note the backslash in the name of the LATEX command \mathrm (which
typesets text in a mathematics roman font) needs to be escaped using \\.
The prefix argument indicates the function name prefixes its argument.
If the display of a variable name is being set, no third argument is needed.
The possible values of this argument are as follows.

prefix For a function/operator name that precedes the argument.

infix For an operator that appears between two variables.

postfix For a function/operator name that follows the argument.

nary For an operator that appears between each of two or more variables.

nofix For where there is no argument. This is equivalent to omitting the
third argument.

matchfix For where the function/operator surrounds the argument with
matching symbols, such as brackets. In this case the second
argument of the texput command needs to be a list containing the
symbol to be used on the left followed by that to be used on the
right. Optionally, a third element of the list gives the symbol with
which to separate any multiple arguments of the function/operator.

38

Appendix B STACK-specific Maxima commands

Appendix B STACK-specific Maxima
commands

STACK provides some additional Maxima commands which are fully
detailed at

[moodle-url]/question/type/stack/doc/doc.php/CAS/Maxima.md

Some of the more commonly used commands are indicated below.

Randomisation

Example
Select a random element a list rand([1,2,3])

Generate a random integer between, for
example, -5 and 5 but excluding any of the
elements of the list [-1,0,1]

rand with prohib(-5,5,[-1,0,1])

Algebraic

Example
Complete the square in the variable, for
example x

comp square(x∧2+2*x,x)

Housekeeping

Example
Make all variables in an expression lower case exdowncase(X+Y+z)

Numerical
The following commands are useful when manipulating and displaying
floating point numbers to a specified precision. More details can be found
at

[moodle-url]/question/type/stack/doc/doc.php/CAS/Numbers.md

Example
Round, for example, 1.234 to 2 decimal places, decimalplaces(1.234,2)

or to 2 significant figures significantfigures(1.234,2)

Note
Beware Maxima’s use of
banker’s rounding, which
may, for example, round
1.245 to 1.24 to 2 d.p.

Display a number to the specified number of
decimal places, with trailing zeroes if
required,

dispdp(1.2,2)

or to a specified number of significant figures dispsf(1.2,3)

Display x in scientific notation, with n
decimal places in the mantissa

scientific notation(x,n)

39

Appendix C Basic LATEX commands

Appendix C Basic LATEX commands
LATEX commands start with \. Items are grouped with {...}. Optional
arguments are given within square brackets [...]. LATEX syntax should be
contained within

\(...\) for in-line mathematics
\[...\] for displayed mathematics

Syntax Output

Powers x∧2 x2

x∧ {2y} x2y

Subscripts x n xn

Roots \sqrt{2}
√

2

\sqrt[3]{2}
3
√

2

Fractions \frac{x}{2}
x

2
Brackets (...) (...)

[...] [...]

\{...\} {...}
. . . variable size brackets \left(\frac{x}{2} \right)

(x
2

)
Relations < <

> >

\le ≤
\ge ≥
\ne 6=
\approx ≈

Operators \times ×
\div ÷
\pm ±

\sum_{i=1}^n

n∑
i=1

\prod_{i=1}^n

n∏
i=1

\int_0^1

∫ 1

0

Functions \sin sin

etc.

Greek letters \gamma, \Gamma γ, Γ

etc.

Aligned equations \begin{align*}

x &= (1+y)^2\\

&= 1+2y+y^2

\end{align}

x = (1 + y)2

= 1 + 2y + y2

40

Appendix D STACK answer input types

Appendix D STACK answer input types
The available input types are as follows. Full details are available at

[moodle-url]/question/type/stack/doc/doc.php/Authoring/Inputs.md

When needed, Extra options is a comma-separated list of the possible
options listed.

Input type Expected input Notes

Algebraic input An algebraic expression

Numerical A number (possibly given in
terms of standard functions,
for example, sin(pi/4))

Trailing zeros in student’s answer are preserved.

Extra options include:
floatnum, answer must be floating-point
rationalnum, answer must be a rational
rationalized, denominators must be surd-free
mindp:n, must have n or more decimal places
maxdp:n, must have at most n decimal places
minsf:n, must have n or more significant figures
maxsf:n, must have at most n signfiicant figures
Decimal place and significant figure option cannot
be used together.

Units A number with units
eg, 12.1m/s∧2

Units are treated as multipilers of the number, so
students must either enter * between the number
and unit, or the question needs to automatically
insert it (see Subsection 5.4.5).
To allow standard prefixes (k,M etc.) include
stack unit si declare(true) in Question
variables code, and ensure stars are inserted
assuming single character variable names.

Extra options include:
negpow, display, eg.,m/s as ms-1

mindp:n, must have n or more decimal places
maxdp:n, must have at most n decimal places
minsf:n, must have n or more significant figures
maxsf:n, must have at most n signfiicant figures
Decimal place and significant figure option cannot
be used together.

Matrix A matrix Provides a grid of boxes (with the dimensions
taken from the model answer) for students to
complete. Input is stored as a Maxima matrix.

41

Appendix D STACK answer input types

Input type Expected input Notes

True/False Provides a true/false
drop-down menu

Returns the Maxima boolean value true or false

Drop down (list)
Checkbox

Radio

A multiple-choice question of
the corresponding style

The model answer must be a list of lists. Each
element of the outer list has the form
[value, correct, display] where
value is the value stored in the answer variable
when this option is selected,
correct is true or false depending on whether
the option is a correct answer or not,
display is an optional item giving what to display
for each item. In its absence, value is displayed.

Single

character

A single character

String A Maxima string

Text area A set of algebraic
expressions, one on each line

Input is stored as a list, each element being one
line of input. The model answer should also be a
list.

Equivalence

reasoning

A set of algebraic
expressions, one on each line

The equivalence of each line and the previous line
is checked. Currently under development.
See [moodle-url]/question/type/stack/doc/

doc.php/CAS/Equivalence reasoning.md

Notes Free text input The input is not stored, so cannot be marked. The
answer variable should not be used in the PRT.

42

Appendix E STACK answer tests

Appendix E STACK answer tests
Answer tests are used in each potential response tree (PRT) node to judge
and mark a student’s answer. They generally compare the expression or
variable given in the PRT node box labeled Sans (“student’s answer”)
with that given in the Tans (“teacher’s answer”) box. Here, we denote the
contents of these boxes with sans and tans respectively. Some tests only
make use of sans, but both boxes still need to be completed. (When only
sans is needed, 0 could be entered for tans.)

Some tests require additional information to be given in the Test options
box.

Full documentation on the answer tests is available at

[moodle-url]/question/type/stack/doc/doc.php/Authoring/

Answer tests.md

The available answer tests include the following.

Equality

Answer test Tests for Notes

AlgEquiv Algebraic equivalence Always simplifies the given input.
(Can fail in some cases, for example nested
surds.)

SubstEquiv Algebraic equivalence,
up to substitution

Considers x2 and a2, for example,
equivalent.
Note: if you only wish to consider case
equivalence (x ≡ X), use AlgEquiv with
exdowncase(sans) and exdowncase(tans)

in the Sans and Tans boxes.

EqualComAss Equivalence up to commutativity
of addition and associativity of
multiplication

Considers a+ b ≡ b+ a, but x+ x 6≡ 2x.

SameType Whether sans and tans have the
same type

For example, whether both are algebraic
expressions or both are lists etc.

SysEquiv Whether two systems (lists) of
multivariable polynomial equations
have the same solution set

CasEqual Whether sans and tans have the
same internal representation in the
computer algebra system

43

Appendix E STACK answer tests

Algebraic form
Note: for tests that consider both form and equivalence, you can test for
form alone by testing sans against sans.

Answer test Tests for Notes

Expanded Whether sans is fully expanded tans is not used.

FacForm Whether sans is fully factorised
(over the rationals) and algebraically
equivalent to tans

Give the variable the factorisation is done
with respect to in Test options.

LowestTerms Whether all numerical fractions are
in lowest terms, with the
denominator free of surds and
complex numbers

tans is not used.

SingleFrac Whether sans is a single fraction
and algebraically equivalent to tans

The test fails for student input of the form
-(a/b) which is considered to be the
negation of a single fraction, not a single
fraction.

CompletedSquare Whether sans is in completed
square form and algebraically
equivalent to tans

Give the variable the completing square is
done with respect to in Test options.

PartFrac Whether sans is in partial fraction
form and algebraically equivalent to
tans

Give the variable the partial fraction is
done with respect to in Test options.

Calculus
These test the equivalence of algebraic expressions, but give automatic
feedback appropriate to these common operations.

Answer test Tests for Notes

Diff Whether sans and tans are
equivalent

Give the variable to differentiate with
respect to in Test options.
Feedback is given if it appears the student
has integrated.

Int Whether sans and tans are
indefinite integrals of the same
expression.

Give the variable integrated with respect
to in Test options.
Alternatively, a list of options can be
given, starting with the integration
variable and possibly including
NOCONT which condones any lack of
arbitary constant

44

Appendix E STACK answer tests

Numerical
When using these tests it is important that no pre-processing of the
student input is undertaken, so sans should be the raw variable to which
student input is assigned. This is to prevent the removal of trailing zeros
from floating-point numbers. Corresponding care should to taken
throughout the student feedback areas to ensure the correct number of
significant figures are displayed.

As always, small numerical errors may be introduced when processing
floating-point numbers.

Answer test Tests for Notes

NumAbsolute |sans− tans| < ε Give the value of the tolerance, ε, in Test
options. sans and tans can be numbers,
sets of numbers or lists of numbers.

NumRelative

∣∣∣∣sans− tans

tans

∣∣∣∣ ≤ ε for tans 6= 0

or, |sans| = 0 if tans = 0

Give the value of the tolerance, ε, in Test
options. sans and tans can be numbers,
sets of numbers or lists of numbers.

Num-GT sans > tans

Num-GTE sans ≥ tans

NumDecPlaces sans is given to d decimal places
and sans = tans to d decimal places

Give the number of decimal places d (a
positive integer), in Test options. Trailing
zeros are counted, so 1.2 6= 1.20. sans and
tans are rounded to d decimal places
before the test is applied.

NumSigFigs sans is given to s significant figures
and sans = tans to t significant
figures.

Give the numbers of significant figures
(positive integers) as a list [s,t] in Test
options. If s = t, then simply give s.
Common options to use are
[s,s-1] which permits an error in the
final digit
[s,0] when only the number of significant
figures is checked
[s,-1] which checks the answer has at
least s significant figures and is correct to
the accuracy given.
The test only supports sans < 1022.

StrictSigFigs The number of significant figures
given (strict interpretation)

tans is not used.
Give the number of significant figures (a
positive integer), in Test options.

45

Appendix E STACK answer tests

Units
These answer tests are for numerical answers with scientific units and need
to be used with the Units input type. The teacher’s answer needs to be
specified with units too, for example 12.1*m/s∧2. Both student’s and
teacher’s answers are converted to base SI units before comparisons are
made. The Unit tests are based on the Numerical tests above.

Tests names beginning Units... permit conversion of units when
comparing to the teacher’s answer. Those beginning UnitsStrict...

require the student’s and teacher’s answers to be given in exactly the same
units.

Answer test Tests for Notes

UnitsAbsolute |sans− tans| < ε after conversion
to base units

Give the value of the tolerance, ε, in
Test options.

UnitsRelative

∣∣∣∣sans− tans

tans

∣∣∣∣ ≤ ε for tans 6= 0

or, |sans| = 0 if tans = 0
after conversion to base units

Give the value of the tolerance, ε, in
Test options.

UnitSigFigs sans is given to s significant figures
and sans = tans to t significant
figures, after conversion to base
units

Give the numbers of significant figures
(positive integers) as a list [s,t] in
Test options. If s = t, then simply give
s. Common option to use are
[s,s-1] which permits an error in the
final digit
[s,0] when only the number of
significant figures is checked
[s,-1] which checks the answer has at
least s significant figures and is correct
to the accuracy given.

UnitsStrictAbsolute |sans− tans| < ε with sans and
tans in the same units

Give the value of the tolerance, ε, in
Test options.

UnitsStrictRelative

∣∣∣∣sans− tans

tans

∣∣∣∣ ≤ ε for tans 6= 0

or, |sans| = 0 if tans = 0
with sans and tans in the same
units

Give the value of the tolerance, ε, in
Test options.

46

Appendix E STACK answer tests

Answer test Tests for Notes

UnitsStrictSigFigs sans is given to s significant figures
and sans = tans to t significant
figures, with sans and tans in the
same units

Give the numbers of significant figures
(positive integers) as a list [s,t] in
Test options. If s = t, then simply give
s. Common option to use are
[s,s-1] which permits an error in the
final digit
[s,0] when only the number of
significant figures is checked
[s,-1] which checks the answer has at
least s significant figures and is correct
to the accuracy given.

Strings

Answer test Tests for Notes

String sans and tans are identical
strings, ignoring any leading or
trailing whitespace

SloppyString sans and tans are identical
strings, ignoring case and any
leading or trailing whitespace

47

Appendix E STACK answer tests

Reasoning by equivalence
These tests are for answers consisting of a set of expressions or equations,
one per line, which ought to be equivalent. The lines could represent steps
within the rearrangement of an expression or solution of an equation.
These tests need to be used with the Equivalence reasoning input type.

This is an area currently under development and the type of expressions
supported is currently limited. See
[moodle-url]/question/type/stack/doc/

doc.php/CAS/Equivalence reasoning.md for more details.

Lines of working in both the student’s and teacher’s answers are stored as
lists.

The Test option for these tests is a list containing all or some of the
following

hideequiv Do not show line equivalence at validation.

comments Allows students to include comments.

firstline Forces the first line of the student’s answer to be the first line
of the teacher’s answer.

assume pos Assumes variables are positive, so x2 = 4 is equivalent to
x = 2. If used, this also needs setting in the question Options
(subsection 5.6.2).

assume real Assume working over real numbers. If used, this also needs
setting in the question Options (subsection 5.6.3).

firstline can also be used as a Syntax hint (subsection 5.4.6) in which
case the particular value of the first line of the teacher’s answer is provided
as a hint.

Answer test Tests for Notes

EquivReasoning Whether all lines with sans are
equivalent

tans is not used.

EquivFirst Whether all lines with sans are
equivalent and the first line of the
student’s and teacher’s answers are
equivalent, up to commutativity
and associativity.

48

Index

Index
:, assign to a variable, 11
:=, assign to a function, 11
=, equality (in an equation), 11
[[BASIC-ALGEBRA]], 22
[[BASIC-CALCULUS]], 22
[[BASIC-MATRIX]], 22
[[feedback:prt1]], 17
[[input:ans1]], 13
[[validation:ans1]], 14
{# . . . #}, 13
{@. . .@}, 13

adaptive question behaviour, 6
Administration, Moodle block, 7
allowed words, 23
answer

box, 13
multiple, 14
size, 20

check type of, 23
input type, 20

list of, 41
student, 13
test, 27

list of, 43
quiet, 27

validation, 14
showing, 24
student must verify, 23

assign
to a function, 11
to a variable, 11

assume
positive, 30
real, 30

authoring a question, 9
auto-simplify, 25

behaviour, question, 6
adaptive, 6
deferred feedback, 6
deferred feedback with CBM, 6
immediate feedback, 6
immediate feedback with CBM, 6
interactive with multiple tries, 6

categories, question bank, 7
CBM (confidence based marking), 6
check

answer type, 23
response type, 23

comment, in Maxima code, 11
confidence based marking, 6

debugging, 16
default mark, 17
deferred feedback question behaviour, 6
deferred feedback with CBM question behaviour,

6
deployed question variants, 32

export, 34
import, 34

deploying variants, 34
display

formatted value of variable, 13
i, 30
inverse trigonometric functions, 30
matrix parenthesis, 30
multiplication sign, 30
surd, 30
unformatted value of variable, 13

documentation, STACK, 5
duplicate question, 9

equality, in an equation, 11
equivalence, reasoning by, 48
export

deployed variants, 34
questions, 9

feedback
general, 18
specific, 17
stanadrd, 30
variables, 26

float, forbid, 23
forbid float, 23
forbidden words, 22
functions

assign to, 11
name of, 11

general feedback, 18

hint
syntax, 21
syntax, attribute of, 22

hints, 31

i, display of, 30
ID number, 19
ILIAS, 5
immediate feedback question behaviour, 6

49

Index

immediate feedback with CBM question
behaviour, 6

import
deployed variants, 34
questions, 9

input
box, 13

multiple, 14
size, 20

student, 13
type, 20

list of, 41
validation, 14

showing, 24
student must verify, 23

interactive with multiple tries question
behaviour, 6

inverse trigonometric functions, display of, 30

LATEX, basic commands, 40
Learning Tools Interoperability (LTI), 5
lists, 11
lowest terms, require, 23
LTI, 5

mark, default, 17
matrix parenthesis, display of, 30
Maxima, 10

comment in code, 11
introduction to, 11
lists, 11
local use, 12
order of terms, 12
randomisation, 12
STACK-specific commands, 39
syntax, 11
useful commands, 35

model answer, 20
Moodle

administration block, 7
question bank, 7
Virtual Learning Environment, 5
XML, 9

multiple inputs, 14
multiplication sign, display of, 30

name
of function, 11
of variable, 11

nodes, 26

order of terms, 12
ordergreat, 12

page
Preview question, 9, 16, 32
Question tests & deployed variants, 32

penalty, 17
Potential response tree, 24

nodes, 26
preview question, 9, 16, 32
PRT (Potential response tree), 24

question
authoring, 9
bank

categories, 7
Moodle, 7

duplication, 9
export, 9
form, 10
import, 9
name, 10
note, 19
preview, 16, 32
tests, 32, 33
text, 13
value, 25
variables, 10
variants, 32

deploying, 34
export, 34
import, 34

question behaviour, 6
adaptive, 6
deferred feedback, 6
deferred feedback with CBM, 6
immediate feedback, 6
immediate feedback with CBM, 6
interactive with multiple tries, 6

Question tests & deployed versions page, 32
question-level simplify, 29
Quick Start guide, 5
quiet, in answer test, 27

rand, 12
rand with prohib, 12
random group, 13
randomisation commands, 12
reasoning by equivalence, 48
require lowest terms, 23
response, check type of, 23

sandbox, STACK, 13
saving, 15
simp:false, 12, 26
simp:true, 26

50

Index

simplification
disable, 12, 26
enable, 26
question-level, 29
turn on or off in PRT, 25

specific feedback, 17
STACK sandbox, 13
standard feedback, 30
strict syntax, 20
student answer, 13
student input, 13
surd, display of, 30
syntax, 11

hint, 21
hint attribute, 22
Maxima, 11
strict, 20

tags, 31
terms, order of, 12
tests

answer, list of, 43
question, 33

trigonometric functions, inverse, display of, 30

validation, 14
showing, 24
student must verify, 23

variables
assign to, 11
display formatted value, 13
display unformatted value, 13
feedback, 26
name of, 11
question, 10

variants, deploying, 34
version number, 6

web-browsers, 5
words

allowed, 23
forbidden, 22

51

	 Introduction
	What is STACK?
	Question behaviours
	Moodle question bank
	Creating a STACK question
	Authoring a question
	Importing a question

	STACK question form
	General settings
	Question name
	Question variables
	Random group
	Question text

	Saving and testing
	Saving
	Preview and Testing
	Debugging

	General settings, continued
	Default mark
	Specific feedback
	Penalty
	General feedback
	ID number
	Question note

	Input: ans1
	Input type
	Model answer
	Input box size
	Strict syntax
	Insert stars
	Syntax hint
	Hint attribute
	Forbidden words
	Allowed words
	Forbid float
	Require lowest terms
	Check the type of the response
	Student must verify
	Show the validation
	Extra options

	Potential response tree: prt1
	Question value
	Auto-simplify
	Feedback variables
	Nodes

	Options
	Question-level simplify
	Assume positive
	Assume real
	Standard feedback
	Multiplication sign
	Surd for square root
	Meaning and display of sqrt(-1)
	Inverse trigonometric functions
	Default shape of matrix parenthesis
	Hints

	Tags
	Created/last saved
	Fix dollars

	Previewing the question
	Question tests and deploying variants
	Question tests
	Deploying variants

	Useful Maxima commands
	STACK-specific Maxima commands
	Basic LaTeX commands
	STACK answer input types
	STACK answer tests
	Index

